
Subversion
in OS/2 and eComStation

Main principles, usage, and installation
of a free version-control system
(also) for OS/2 and eComStation

Jarda Kačer <jarda@kacer.biz>

Warpstock Europe 2006
Cologne, November 16-19, 2006

Agenda

● Problems of concurrent work

● Main features and components of Subversion

● Revisions, basic principles of work

● Branching, merging, tagging, standard layout

● Installation and usage on OS/2

Problems of Concurrent Work

● One shared copy, more users working in parallel

● Classic problem known from parallel
programming

● Changes made by one user are re-written with
changes of another user and thus lost

A

A A

1
A

A1 A2

2
A1

A1 A2

3
A2

A1 A2

4

!

Solution 1: Locking

● A standard solution for parallel algorithms

● To be able to change the shared copy, the user
must have it locked and he must have the last
copy

● Not really convenient for version control – Too
restrictive

– Pessimistic algorithm

– In reality, not exactly the same places are usually
modified

Solution 2:
Copy-Modify-Merge [1]

● Every user has its own working copy (WC)

● A shared version (for everybody) in the
repository

● Changes performed in the WC only

● There is an algorithm to merge changes from
other users to the WC

● Only a properly merged WC can be written to
the repository

● A conflict can arise when merging the WC

Solution 2:
Copy-Modify-Merge [2]

A

A A

1
A

A1 A2

2
A2

A1 A2

3
A2

A1 A2

4

A2

A1A2 A2

5

Merge!

A2

A3 A2

6
A3

A3 A2

7
A3

A3 A3

8

Subversion – Basic Features

● An open-source version-control system using the
Copy-Modify-Merge method

● A central repository, users' local WCs

● From the beginning planned to replace CVS

– Able to version directories, supports file copying,
moving, ...

– Atomic commit

– Versioned metadata

– Different network layers

– Efficient branching and tagging, ...

System Structure

● Different clients

● Different access
methods:

– file:// - locally

– http:// and https://
- Apache with WebDAV

– svn:// and
svn+ssh:// - SVN
protocol

● Different types of
repository

SVN Repository

Berkeley DB FSFS

Repository Interface

Apache

mod_dav

mod_dav_svn
SVN Server

Command Line
Client

GUI Client

Client Library

Client Interface

Working Copy
Management Library

DAV

Repository Access

SVN Local

TCP/IP

Programs in the Distribution

● svn – command-line client

● svnversion – to get WC status

● svnlook – to browse repository

● svnadmin – to configure repository

● svndumpfilter – to filter dump streams from
repository

● svnserve – server

● mod_dav_svn – Apache module

The Most Basic Operations

● Checkout

– svn checkout URL project

– The very first copy of a project from the repository to
your WC

● Update

– svn update

– To get changes made by others (from the repository) to
your WC

● Commit

– svn commit

– To public your changes from your WC to the repository

Revisions

● A non-negative integer

● Global for the whole repository

– For a given file F, there is not necessarily any change
between revisions M and N

● Any commit to the repository increments the
revision number

● A revision is a snapshot of the repository in a
certain moment

● For a new repository, revision number = 0

Special Revision Keywords

● HEAD

– The newest revision in the repository

● BASE

– Revision of last update of a file in the WC

– May differ for different files

● COMMITED

– Revision of last commit of a file in the WC

– ≤ BASE
● PREV

– The last-before-commit revision – COMMITED-1

Valid only locally in a WC

States of Files in WC [1]

● Unchanged + Current

– No changes in WC, no changes in repository

– Commit will not do anything

– Update will not do anything

● Locally changed + Current

– Changes in WC, no changes in repository

– Commit will succeed

– Update will not do anything

States of Files in WC [2]

● Unchanged + Out-of-date

– No changes in WC, changes in repository from others

– Commit will not do anything

– Update will bring changes to WC

● Locally changed + Out-of-date

– Changes in WC, changes in repository from others

– Commit will fail, WC must be updated first

– Update will try to merge changes, may succeed or fail

Commit versus Update

● Completely independent, commit does not need
update, update does not need commit

– The last slide is an exception: The commit fails because
there are changes in the repository not yet propagated
to the WC

● Every file can have a different revision because
of commits on different files → mixed revisions

– Normal state

Basic Work Cycle [1]

1.Update your WC
● svn update, one letter as result: U – Updated, A –

Added, D – Deleted, R – Replaced, G – Merged, C –
Conflict

2.Make changes
● svn add – add a new file

● svn delete – delete a file

● svn copy – make a copy

● svn move – move a file

● Or just edit some file(s)

Basic Work Cycle [2]

3.Detect changes

– svn status – info about changes

– svn diff – get the exact difference of content

– svn revert – throw away your changes, return to BASE

4.Refresh your WC

– svn update – good to do before committing (to be sure),
you do not lose your local changes :-)

– svn resolved – resolve a possible conflict after update
(see below)

5.Publish your changes to the repository

– svn commit – a new revision will be created

Other Useful Commands

● svn log – prints out history with comments

● svn cat – prints out a file from the repository

● svn list – prints out files in a dir in the repository

● svn cleanup – cleans up the WC after abort

● svn import – first import of a project into the
repository

● svn info – info about the WC and the repository

● svn help [command] – help for all commands

● Usually all commands accept options in many
different ways.

Conflicts During Update

● Merge cannot work because local and remote
changes are at the same places

● “C” in the listing, so-called “conflict markers”
inside the file: “<<<<<<<”, “========”,
“>>>>>>>”

● Moreover, 3 temporary files are created:

– file.mine – my local file with changes, state right before
update

– file.rXXX – local file at revision BASE (without changes)

– file.rYYY – file from the repository – HEAD

Resolution of Conflicts

● 3 options:

– Edit by hand the problematic places between
<<<<<<< and >>>>>>>

– Use one of the temporary files and copy it over the file
in question

– svn revert – throw away your changes

● Then: svn resolved

– Deletes all 3 temporary files and marks the file as
merged so it can be committed

Project Branches [1]

● Branch:

– Line of development independent of the others

– It has a common history with the branch it was created
from

– Begins to exist by copying an existing branch

● Branches add one (virtual) dimension:

– File

– Revision

– Branch

Time

Branch 1

Branch 2

Branch 3

Initial Line of Development
“TRUNK”

Project Branching [2]

● TRUNK = Initial, main branch

● The 3rd dimension is only virtual

– In fact, it's a directory/URL like all others

– People give it the meaning of a branch

● svn copy URL-trunk URL-branch -m “Description”

● Two typical uses (see below):

– Release branches – a branch for every released version

– Feature branches – to prevent longer work from
affecting stability of the project

Continuous Merges
from Trunk to Branch

● Goal: To continuously apply changes from the
trunk to our branch to prevent problems when
merging the branch back to the trunk at the end
(feature branches)

– Also applies for release branches – bug fixes etc.

● So-called “porting”

● svn merge -r Rbranch:Rtrunk http://.../trunk

● svn commit

● Subversion does not remember merges done!
Be careful not to merge the same changes more
than once!

Conflicts During Porting

● The file need not exist at all in your WC →
Skipped missing target

● Also a “normal” conflict can occur

● Created files:

– file.working

– file.left

– file.right

Porting to Trunk
● You must have the trunk in your WC, fully up-to-

date

● You must know when the branch was created or
last merged to the trunk

➔ svn log --verbose --stop-on-copy URL-branch

➔ cd\trunk

➔ svn update

➔ svn merge -r XX:YY URL-branch

➔ svn status

➔ svn commit -m “Merging changes from branch
B, from revisions XX-YY to trunk.”

Undo

● svn merge -r 303:302 URL

● svn commit -m “Undo”
A reverse change!

Tags

● Tag = Snapshot in a certain time

● Like a revision, but has a name, not necessarily
for the whole repository

● svn copy URL/trunk URL/tags/release-1.0 -m
“Tag v. 1.0”

● Actually, it's a branch too, simply a directory

● The admin must make it read-only

● Trick: You can save your WC as a tag:

– svn copy MyWC URL/tags/mine

– If your WC is mixed from different branches, updates
etc. and you want to save it

Typical Repository Layout

● Several projects in the repository

● Every project has:

– Trunk

– Branches

– Tags

Software Development 1:
Release Branches

● New stuff to /trunk

● Before release, copy to /branches/x.y

● Further work in parallel:

– /trunk – development of a new version

– /branches/x.y – testing, bug fixing

● Branch /branches/x.y is maintained

● Release to the customer: /branches/x.y → /
tags/x.y.z

● Next tag of this branch will be in /tags/x.y.(z+1)

Software Development 2:
Feature Branches

● A branch exists for a limited time when a new
feature is developed

● Not to affect stability of /trunk

● Possible extremes:

– Everything to /trunk, no branches

– Nothing to /trunk directly, only to branches, porting to /
trunk

● Usually somewhere in the middle:

– Branches for longer works

– Regularly: merge /trunk → branch

– At the end: merge branch → /trunk

Switching between Branches

● You can switch your WC from branch to branch

● svn switch NewURL

● Even to a certain revision

● You can switch just directories or even files →
“Mixed WC”, can become pretty messy :-)

● All branches must be from the same repository

The OS/2 Version

● Port by Paul Smedley at
http://www.smedley.info/os2ports/

● Currently version 1.4.0 beta 1 from 2006-09-14

● Compiled with the “new” GCC, requires LibC
0.6.1

● Not much tested, even some basic operations do
not work :-(

– Bug reports: http://mantis.smedley.info

– Paul does a great job but he needs some feedback!

● Installation = Unpack a ZIP file

SVN Information

Repository Creation

Help

Start of the Server

Local Access

A Bug in 1.3.1

● The server crashes when a client connects :-(

● Fixed in 1.4.0 :-)

Network Access

SSL Not Supported:-(

Configuration

Authentication Bug :-(

Books

● Version Control with Subversion

– B. Collins-Sussman, B. W. Fitzpatrick, C. M. Pilato

– http://svnbook.red-bean.com

● Pragmatic Version Control Using Subversion

– M. Mason

– http://www.pragmaticprogrammer.com/titles/svn/

Subversion on Other Systems [1]

● Windows: Tortoise SVN

– Explorer plugin, accessible via a context menu

– Would also be possible in eCS as a WPS extension

Subversion on Other Systems [2]

● Eclipse: Subclipse

– Plugin, integrated
everywhere in the IDE

What We Did Not Talk About

● Repository administration

● Subversion + Apache

● Properties, hooks, access control on directory
level

● Locking

● Many other topics...

Benefits of Using
Version Control

● Complete history of your projects

● Necessary for team development

– Efficient way of code sharing and change management

● You feel safe

– You can rollback your changes any time

– You do not worry so much about making changes

● It gives stability to your development process

– Nothing can be lost

– Support for older versions in parallel to the current one

Conclusion

● Excellent portable open-source version-control
system

● Should replace CVS in the future

● Unfortunately, the OS/2 port is not much usable
yet

– More users necessary, as usual

– Much work for one person – Paul Smedley

